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We investigate the anisotropic triangular lattice that interpolates from decoupled one-dimensional chains to
the isotropic triangular lattice and has been suggested to be relevant for various quasi-two-dimensional mate-
rials such as Cs2CuCl4 or �-�ET�2Cu2�CN�3. We obtain an excellent accuracy by means of a representation for
the resonating valence-bond wave function with both singlet and triplet pairings. This approach allows us to
establish that the magnetic order is rapidly destroyed away from the pure triangular lattice and incommensurate
spin correlations are short range. A nonmagnetic spin liquid naturally emerges in a wide range of the phase
diagram with strong one-dimensional character.
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When cooling down the temperature, the majority of ma-
terials undergo phase transitions to ordered phases that break
some symmetry. Examples are ubiquitous in nature, e.g.,
magnets or superconductors, and define the paradigm in
solid-state physics. In the last years, a great effort has been
done to determine and characterize new states of matter,
which escape this conventional description. In this regard,
one of the most intriguing case is given by the so-called spin
liquids, namely, insulating phases that cannot be adiabati-
cally connected to any band insulators.1 The concept of spin
liquid was introduced by Fazekas and Anderson2 and its pos-
sible connection with the low-doping regime of high-
temperature superconductors was highlighted by Anderson.3

The standard picture of a spin liquid is given by the resonat-
ing valence-bond �RVB� ansatz, a superposition of configu-
rations in which couples of spins form singlets but change
partner from one configuration to the other. After a long pe-
riod dominated by the prejudice that spin liquids cannot be
actually stabilized, today there is an increasing evidence that
they can be obtained in both microscopic models and real
materials. Spin-liquid behavior has been suggested in various
compounds: in two-dimensional �2D� triangular lattices,4,5 in
Kagome materials,6 and more recently in three-dimensional
hyper-Kagome antiferromagnets.7

The 2D triangular lattice is the simplest structure in which
the nearest-neighbor superexchange leads to frustration.
However, it is well proved that ideal Heisenberg spins with
antiferromagnetic interactions on such a lattice display an
ordered spin configuration, even for the spin-1/2 case.8,9

Nevertheless, due to strong quantum fluctuations, the mag-
netic order parameter is highly reduced from its classical
value9,10 and small perturbations may destroy long-range or-
der and drive the system toward a pure spin-liquid ground
state. In this sense, a finite on-site repulsion U �or equiva-
lently multispin interactions� may stabilize a magnetically
disordered phase close to the metal-insulator transition.11,12

Another very interesting possibility to further increase quan-
tum fluctuations is to have different superexchange couplings
along different spatial directions. This latter case is particu-
larly appealing because of its connection with various mate-
rials such as Cs2CuCl4 and Cs2CuBr4 �Ref. 13� or a family of
quasi-2D organic compounds.14

In this Brief Report, we consider a spin-1/2 Heisenberg
model defined on the anisotropic triangular lattice

H = J�
�i,j�

Si · S j + J��
�i,j�

Si · S j , �1�

where Si= �Si
x ,Si

y ,Si
z� is the spin operator at site i and �i , j�

indicates nearest-neighbor sites along the a1= �1,0� direc-
tion, while �i , j� indicates nearest-neighbor sites along either
a2= �1 /2,�3 /2� or a3= �−1 /2,�3 /2�. Therefore, the model
consists in one-dimensional �1D� chains coupled with zigzag
bonds J�. Here, we consider clusters with N=L2 sites and
periodic boundary conditions along La1 and La2. Recent
works showed a strong one dimensionalization15 and gapless
S=1 /2 excitations16 in a wide regime of frustration
J� /J�0.5. The main limitation of these results is the inaccu-
rate description of the magnetic correlations. In fact, works
based on series expansions17,18 showed that a magnetic spiral
order may be present down to the 1D limit, with almost
antiparallel spins along chains. The fact that the 1D disor-
dered phase is unstable toward the formation of incommen-
surate magnetic order has been also suggested by a perturba-
tive technique.19 In addition, a renormalization-group
approach suggested that either a spin-Peierls phase is stabi-
lized or a commensurate collinear order develops due to an
effectively generated interaction between next-nearest-
neighbor chains.20

Before considering our variational Monte Carlo calcula-
tions, it is useful to present exact results by the Lanczos
method on the 6�6 cluster �see Fig. 1�. As already obtained
in Ref. 21, we find a level crossing in the ground state; this is
due to a change, around J� /J�0.825, in the quantum num-
ber of the reflection symmetry. In addition to ground-state
properties, here we can also afford calculations for the im-
portant low-energy excited states. We find that the lowest
triplet excitation has different quantum numbers for
J� /J�0.775, where q= �3� /4,0�, and for J� /J�0.775,
where q= �� ,� /�3�. Remarkably, in a wide regime, the low-
energy spectrum shows a clear 1D character with two
�almost� degenerate triplet excitations with qx=�, namely,
q= �� ,� /�3� and q= �� ,� /3�3� �see Fig. 1�.
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Let us now move to a detailed study of Hamiltonian �1�
by using a variational wave-function �WF� approach. In the
original RVB approach the variational WF can be obtained
by applying the Gutzwiller projector PG that completely sup-
press doubly occupied sites to the ground state of a mean-
field BCS Hamiltonian.3 A magnetic state can be obtained by
adding an external field in the BCS Hamiltonian and consid-
ering a suitable long-range spin Jastrow factor for spin-wave
fluctuations, i.e., Js=exp�1 /2�i,jvijSi

zSj
z�. The ground state of

the mean-field Hamiltonian containing both electronic pair-
ing and magnetism can be written in terms of a generalized
complex pairing function f i,j

�i,�j that contains both singlet and
triplet components, so that the full variational WF is given
by22

��	 = JsPG exp
1

2 �
i,j,�i,�j

f i,j
�i,�jci,�i

† cj,�j

† ��0	 , �2�

where ci,�i

† creates an electron with spin �i on site i. At
present, all variational approaches on the lattice have opti-
mized the WF by considering few short-range parameters of
the BCS Hamiltonian �e.g., the BCS pairing and/or hopping
amplitudes�, implying a long-range pairing function. Here,
we generalize this variational approach without defining the
mean-field BCS Hamiltonian. Instead, we directly optimize
the pairing amplitude f i,j

�i,�j. This approach allows us to have
more variational freedom and, therefore, provides a much
less biased ansatz to the ground state. Let us now discuss the
symmetries that we use for this quantity. First of all, we
consider independent ��i ,� j� values for �↑ ,↑�, �↓ ,↓�, �↑ ,↓�,
and �↓ ,↑� amplitudes. Then, in order to take into account
magnetic correlations, we consider two different possibili-
ties. The first one has a three-sublattice symmetry �suitable to
the 120° order� and the second one has antiparallel spins
along 1D chains and with two independent chains with dif-
ferent magnetic moments �suitable to describe the magnetic

order for J� /J�1�. Despite these limitations, the correlated
WF of Eq. �2�, optimized in presence of the Jastrow factor
Js, may show clear incommensurate spin-spin correlations,
demonstrating that our approach is highly flexible and allows
us to describe nontrivial spin correlations. In summary, for
each bond and each spin case, we have three �two� indepen-
dent complex numbers for the first �second� case. Finally, a
2�1 structure for each bond is considered23 for the case of
three sublattices. This choice implies an extra sign factor on
f i,j

�i,�j given by the general rule: the sign is −1 if i1 is odd and
�i2− j2� is odd; otherwise, the sign is +1, with i1 and i2 being
the coordinates of site i in the basis of a1= �1,0� and
a2= �−1 /2,�3 /2� �similarly for the site j�. See Fig. 2 for the
sign convention of nearest-neighbor sites. Periodic or antipe-
riodic boundary conditions on f i,j

�i,�j are chosen, depending on
L. Although the WF breaks the spin SU�2� symmetry, the
actual value of the total spin square �S2	 is as small as 0.07
for the 18�18 cluster. The fundamental ingredients are the
presence of the 2�1 structure for the signs of the pairing,
relevant for J��J, and the direct optimization of f i,j

�i,�j �con-
taining both singlet and triplet components�, which is af-
forded here. In the isotropic case, we obtain excellent results,
which give an energy per site E /J=−0.5470�1� in the ther-
modynamic limit, very close to our estimation of the exact
value E /J=−0.551�1� �which is extracted with the variance
extrapolation of WFs with zero and one Lanczos step24� and
much lower than previous estimates E /J�−0.53.25,26

In Fig. 2, we report the accuracy of the two WFs �with
three-sublattice or two-chain structure� for the 6�6 lattice.
The full optimization of the pairing function allows us to
reach a very good accuracy in the whole range of our interest
and, in particular, for J� /J�0.5. We notice that the level
crossing present in exact calculations �see Fig. 1� is also
present in the energy of the two variational WFs, although it
is shifted to J� /J�0.6. In the case of a first-order transition,
there is a macroscopic energy difference between the stable

FIG. 1. �Color online� Exact energy gap for the 6�6 cluster as
a function of the frustrating ratio J� /J. Full and empty circles indi-
cate singlet states with q= �0,0� and different reflection symmetries
�the data show a level crossing for J� /J�0.825�. Empty and full
triangles indicate triplet excitations at q= �� ,� /3�3� and
q= �� ,� /�3�, respectively. Full squares indicate triplet excitations
at q= �3� /4,0�.

FIG. 2. �Color online� Accuracy for the energy on the 6�6
lattice, E0 and E denote the exact and the variational energies per
site. The WF with decoupled chains �triangles� and the one with
2�1 structure and 120° order �squares� are reported. The example
of the 2�1 structure for the sign of the nearest-neighbor sites is
also reported: solid and dashed lines denote positive and negative
pairing amplitudes, respectively. The two sites are denoted by full
and empty circles.
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and the unstable states in both regions across the transition
point. However, by increasing the system size, we observe
that the two energies merge for small frustrating ratios,
namely, J� /J�0.6 �see Fig. 3�. This indicates that the tran-
sition becomes continuous in the thermodynamic limit. The
tiny energy difference between the two WFs for J� /J�0.6
suggests an effective chain decoupling. Indeed, the two
variational WFs are compatible with a continuous transition:
at the critical point, the two states coincide and have vanish-
ing interchain pairing amplitude.27

Let us now move to the magnetic properties that can be
assessed by the static spin-spin correlations

S�q� =
1

N
�
l,m

eiq·�Rl−Rm��Sl · Sm	 . �3�

In Fig. 4, we show the results of S�q� for three typical values
of J� /J and three lattice sizes up to 24�24. In the isotropic
case, we found that S�q� has huge peaks at the corner of the
Brillouin zone. The size scaling of m2=S�Q� /N with

Q= �4� /3,0� indicates a three-sublattice magnetic order �see
Fig. 5�. In the thermodynamic limit, we find m2�0.035,
which is larger than m2�0.02 found in previous works
�within the present definition�,9,10 showing that our approach
favors magnetic phases over spin liquids. Despite the fact
that the magnetic moment is considerably overestimated, the
WF captures correct qualitative features. For J� /J=0.9, we
still obtain a finite value of m2, which is very close to the one
found in the isotropic point. In this case, the peak of S�q�
stays at Q= �4� /3,0�, which is very close to the estimation
given in Ref. 18. Moreover, another state can be stabilized
with incommensurate Q but slightly higher energy. These
facts indicate that the true incommensurability could be very
small and it is not detectable with the available sizes. On the
other hand, the size scaling at J� /J=0.8 clearly indicates that
m2→0 in the thermodynamic limit. Here, incommensurate
spin correlations are found �see Fig. 4�, demonstrating the
flexibility of the variational WF. Furthermore, for
J� /J�0.6, the spin-spin correlations display an almost 1D
character: S�q� does only depend on qx, whereas it has a flat
behavior as a function of qy �see Fig. 4�. In this regime, the
triplet components of the pairing amplitude are irrelevant
and we get a perfect RVB singlet state. Although we cannot
exclude a tiny �incommensurate� magnetic order, as it was
pointed out in Ref. 19, our calculations highlight the fact that
the physical properties in the weakly coupled regime, i.e.,
J� /J�0.6, can be effectively represented as a 1D spin liquid
down to very low energies �temperatures�. On the other
hand, for J� /J�0.6 triplet components become fundamental
to describe magnetic fluctuations. At the same time, for
J� /J�0.6 also the 2�1 structure of the pairing turns out to
be important to gain energy, indicating a �second-order� tran-
sition between two spin liquids: one connected to the 1D
case, having all equivalent sites, and another one, having a
2�1 structure in the pairing function. No dimer order is
found in the whole regime of frustration 0	J� /J	1.

FIG. 3. �Color online� Energy per site for the 12�12 �upper
panel� and the 18�18 �bottom panel� for the WF with three-
sublattice magnetization and 2�1 structure �squares� and with two
decoupled chains �triangles�. See text for a detailed description of
the WFs.

J �/J = 0.2 J �/J = 0.8 J �/J = 1

L = 12

L = 18

L = 24

FIG. 4. �Color online� Static spin-spin correlations S�q� for dif-
ferent lattice sizes N=L�L and frustrating ratios J� /J. A darker
color indicates a bigger S�q�.

FIG. 5. �Color online� Lower panel: size scaling of the magnetic
order parameter for different values of J� /J. Stars indicate exact
results for N=36 and lines are fits. Upper panel: position of the
peak q= �Q ,0� for J� /J=0.8.
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In summary, by using an improved variational approach,
we have given strong evidence that a gapless spin liquid
with negligible interchain coupling at low energy is
stable over a wide region of the anisotropic triangular

lattice. The complete phase diagram of this model
�see Fig. 6� can be worked out by considering both
singlet- and triplet-pairing amplitudes that may give rise to
magnetic order as well as incommensurate spin fluctuations.
Our approach highlights the possibility to have two
continuous transitions: a first one between two spin liquids
and another one from a 2D spin liquid and a magnetic phase.
Close to the isotropic region, triplet correlations are
particularly important without necessarily implying magnetic
order.
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FIG. 6. �Color online� Phase diagram of the anisotropic triangu-
lar lattice as obtained by our variational approach.
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